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Ultracold neutral atoms can be trapped in spatially inhomogeneous magnetic fields. In this paper,
we present a theoretical model and demonstrate by using Landau-Zener tool that if the magnetic
resonant transition region is very narrow, “potential barriers” appear and quantum reflection of
such ultracold atoms can be observed in this region.

The Landau-Zener model [1] has become a stan-
dard notion in quantum physics, and has been exten-
sively studied during the recent years [2]. It provides
the probability of transition between two quantum
states coupled by an external field of a constant am-
plitude and a time-dependent frequency which passes
through resonance with the transition frequency. The
level crossing, which is seen in the diabatic basis (i.e.,
the basis of the two bare states-the eigenstates of the
Hamiltonian in the absence of interaction), appears as
an avoided crossing in the adiabatic basis (i.e., the ba-
sis comprising the two eigenstates of the Hamiltonian
in the presence of interaction). There are a number of
cases of level crossings and avoided crossings, which
can be met in quantum physics, solid state physics,
molecular physics, magnetic resonance, atomic col-
lisions, atom-surface scattering, and nuclear physics.
Really, the Landau-Zener model is a reliable qual-
itative and even quantative tool for describing and
understanding such phenomena.

Recent experimental developments enable precise
manipulation of cold atoms by lasers [3, 4]. Small and
accurate velocities of the atoms can be achieved using
advanced cooling [5, 6] and launching [7] techniques,
and a detuned laser field can be used to create con-
trolled and adjustable potentials for the atoms [4, 8].
Under these conditions, the quantum nature of the dy-
namics may become important [9]. Indeed, quantum
tunneling of atoms has recently been observed [10].

It is known that ultracold neutral atoms can be
trapped in spatially inhomogeneous magnetic field. In
this paper, we present a theoretical model and demon-
strate, by using the Landau-Zener tool, that if the
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magnetic resonant transition region is very narrow,
“potential barriers” appear and quantum reflection of
such ultracold atoms (i.e., above-barrier, classically
forbidden reflection of atoms) can be observed in this
region.

We assume that an ultracold atom with spin 1=2
propagates along thez-axis in the positive direction.
It is subject to a gradient magnetic field,Bg = Bgzẑ,
and at the same time an oscillating magnetic field
couples the two spin states. Here we assume that
the oscillating field is circularly polarized,Bo =
Bo(cos!tx̂ + sin!tŷ). The gradient field acts sim-
ilarly to the field in a Stern-Gerlach experiment, in
that as a result of the gradient field, the difference
in potential between the spin states changes linearly
along thez axis. At the pointz0 = !=
Bg at which
the spin states differ in potential by ¯h! (with some
broadening due to uncertainty), the coupling field in-
duces magnetic resonant transitions between the two
spin states. The transition region is proportional to the
amplitude ratio between the oscillating and gradient
fields, i.e.,Bo=Bg. Ignoring any electric polarization
effects, and taking into account magnetic dipole in-
teraction, the Hamiltonian for the atom is given by:
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Bgzẑ +Bo cos!tx̂ +Bo sin!tŷ

�

= �
h̄2

2m
∂2

∂z2
�

h̄


2

�
Bgz Boe

�i!t

Boe
i!t

�Bgz

�
;

mailto:rxie@gwdg.de


168 R.-H. Xie and P. Brumer · Quantum Reflection of Ultracold Atoms in Magnetic Traps

-150

-100

-50

0

50

100

150

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

po
te

nt
ia

l

z

-150

-100

-50

0

50

100

150

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

po
te

nt
ia

l

z

-200

0

200

400

600

800

1000

1200

1400

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

po
te

nt
ia

l

z

Fig. 1. The potentialV+ (solid line) andV
�

(dashed line)
with 
 = �2:0, h̄ = 1, m = 1, ! = 200,Bg = 100:0, and
(a)Bo=Bg = 1; (b)Bo=Bg = 0:1; (c)Bo=Bg = 0:01.

whereS is the spin of the atom and
 is the gyromag-
netic ratio. Defining	+ and	� as the spacial wave-

functions of spin up and down states, respectively, we
get a Schr̈odinger equation
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Then, with the transformation
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where the coupling termD = �h̄
Bo=2, and the
potentialU+ andU� are given by
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It is clear thatU+ = U� = 0 at the resonant pointz0,
i.e., both potential curves in the diabatic base cross at
the resonant point.

Finally, taking the diabatic-adiabatic transforma-
tion [1, 2]
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we get the Schr̈odinger equation in the adiabatic base
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where the coupling termE = � h̄
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at the resonant pointz0. Both potential curves in the
adiabatic base do not cross at the resonant pointz0.
Figures 1 (a) - (c) show the potentialV+ andV� for
different ratios betweenBo andBg. It is found that,
if the transition region is very narrow, for example,
for the case ofBo=Bg = 0:01, sharp potential barriers
are observed in both potential curves in the transition
region. It is known that there exists quantum reflec-
tion of atoms due to such potential barriers. Exactly,
the quantum reflection probability curves for those
potentials can be got by numerical simulation.

The quantum effect, over-barrier reflection, is in
fact dominated by the potential regions where the
semiclassical treatment fails. As an example, in case
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Fig. 2. The badlands associated with the potentialV
�

in
Fig. 1(c), whereE = 1:2V

�

(z = z0).

of the potentialV� of Fig. 1 (c), the de Broglie wave-
length varies slowly when the distance is far away
from the resonant transition pointz0, where
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but there are two “badlands” beside the resonant point
z0, where the Wentzel-Kramers-Brillouin (WKB) ap-
proximation breaks down. In Fig. 2, such badlands
are shown for the potentialV� of Fig. 1 (c) with
E = 1:2V�(z = z0).

In conclusion, using Landau-Zener tool, we have
shown that, if the magnetic resonant transition re-
gion is very narrow, a “potential barrier” appears and
quantum reflection of atoms can be observed in this
region.
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